DPP - 2 (SHM)

Video Solution on Website:-

Video Solution on YouTube:-
https://physicsaholics.com/home/courseDetails/90
https://youtu.be/Uo3qj51ZtEU

Written Solution on Website:-

Q 1. A particle executing S.H.M of amplitude 4 cm and $T=4 \mathrm{sec}$. The time taken by it to move from positive extreme position to half the amplitude is -
(a) 1 sec
(b) $1 / 3 \mathrm{sec}$
(c) $2 / 3 \mathrm{sec}$
(d) $\sqrt{\frac{3}{2}} \mathrm{sec}$

Q 2. A particle performing S.H.M. undergoes displacement of $A / 2$ (where $A=$ amplitude of S.H.M.) in one second. At $t=0$ the particle was located at either extreme position or mean position. The time period of S.H.M. can be : (consider all possible cases)
(a) 12 s
(b) 2.4
(c) 6 s
(d) 1.2 s

Q 3. A particle performs SHM in a straight line. In the first second, starting from rest, it travels a distance a and in the next second it travels a distance b in the same direction. The amplitude of the SHM is
(a) $a-b$
(b) $\frac{2 a-b}{3}$
(c) $\frac{2 a^{2}}{3 a-b}$
(d) None

Q 4. Displacement-time equation of a particle executing $S H M$ is:
$x=A \sin \left(\omega t+\frac{\pi}{6}\right)$.
Time taken by the particle to go directly from $x=-\frac{A}{2}$ to $x=+\frac{A}{2}$ is:
(a) $\frac{\pi}{3 \omega}$
(b) $\frac{\pi}{2 \omega}$
(c) $\frac{2 \pi}{\omega}$
(d) $\frac{\pi}{\omega}$

Q 5. A particle is executing SHM on a straight line. A and B are two points at which its velocity is zero. It passes through a certain point $\mathrm{P}(\mathrm{AP}<\mathrm{BP})$ at successive intervals of 0.5 s and 1.5 s with a speed of $3 \mathrm{~m} / \mathrm{s}$:
(a) the maximum speed of particle is $3 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(b) the maximum speed of particle is $\sqrt{2} \mathrm{~m} / \mathrm{s}$
(c) the ratio $\frac{A P}{B P}$ is $\frac{\sqrt{2}-1}{\sqrt{2}+1}$
(d) the ratio $\frac{A P}{B P}$ is $\frac{1}{\sqrt{2}}$

Q 6. In simple harmonic motion of a particle maximum kinetic energy is 40 J and maximum potential energy is 60 J . Then:
(a) minimum potential energy will be 20 J
(b) potential energy at half the displacement will be 30 J
(c) kinetic energy at $x=A / 2$ is 30 J. Where A is amplitude.

(d) potential energy or kinetic energy at some intermediate position cannot be found from the given data

Q 7. The displacement-time equation of a particle executing SHM is : $\mathrm{x}=\mathrm{A} \sin (\omega t+\phi)$. At time $t=0$ position of the particle is $x=A / 2$ and it is moving along negative $x-$ direction. Then the angle ϕ may be:
(a) $\pi / 6$
(b) $\pi / 3$
(c) $2 \pi / 3$
(d) $5 \pi / 6$

Q 8. A linear harmonic oscillation of force constant $2 \times 10^{6} \mathrm{~N} / \mathrm{m}$ and amplitude 0.01 m has a total mechanical energy of 160 joules. Its -
(a) Maximum potential energy is 100 J
(b) Maximum K.E. is 100 J
(c) Maximum P.E. is 40 J
(d) Minimum P.E is zero

Q 9. Two particles undergo SHM along the same line with the same time period (T) and equal amplitudes (A). At a particular instant one particle is at $x=-A$ and the other is at $x=0$. They move in the same direction. They will cross each other at:

(a) $4 \mathrm{~T} / 3$
(b) $3 \mathrm{~T} / 8$
(c) $x=A / 2$
(d) $\mathrm{x}=\frac{A}{\sqrt{2}}$

Q 10. Two Particles $A \& B$ are executing SHM along same line about same point with same amplitude but different time periods 3 sec and 6 secrespectively. At $t=0, A$ is at $-v e$ extreme and B is at +ve extreme. Find twhen they meet first time
(a) 1 sec
(b) 2 sec
(c) 3 sec
(d) 4 sec

Q 11. Two Particles A \& B are executing SHM along same line about same point with same amplitude 2 meter and same time period 4 sec . Phase difference between A and B is $\pi / 3$. maximum separation between them during motion is
(a) 1 m
(b) 2 m
(c) 1.5 m
(d) None of these

Q 12. Two particles are in SHM on same straight line with amplitude A and 2 A and with same angular frequency ω. It is observed that when first particle is at a distance $A / \sqrt{ } 2$ from origin and going toward mean position, other particle is at extreme position on other side of mean position. Find phase difference between the two particles
(a) 45°
(b) 90°
(c) 135°
(d) 180°

Q 13. Two particles are in SHM with same angular frequency and amplitudes A and 2A respectively along same straight line with same mean position. They cross each other at position $\mathrm{A} / 2$ distance from mean position while moving in opposite direction. The phase difference between them is :
(a) $\frac{5 \pi}{6}-\sin ^{-1}\left(\frac{1}{4}\right)$
(b) $\frac{\pi}{6}-\sin ^{-1}\left(\frac{1}{4}\right)$
(c) $\frac{5 \pi}{6}-\cos ^{-1}\left(\frac{1}{4}\right)$
(d) $\frac{\pi}{6}-\cos ^{-1}\left(\frac{1}{4}\right)$

Answer Key

Q. 1 c	Q. $2 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	Q. 3 c	Q. 4 a	Q. 5 a, c
Q. 6 a, b, c	Q. 7 d	Q. 8 b	Q. 9 b, d	Q. 10 a
Q. 11 b	Q. 12 c	Q. 13 a		

